Sunday, January 31, 2016

White House Roundtable on Cybersecurity of Hospitals and Medical Devices

The White House convened a leadership roundtable
on the topic of cybersecurity of hospitals and
medical devices.
Last month, the White House quietly convened a group of medical device security stakeholders and domain experts to discuss the cybersecurity challenges faced by healthcare delivery organizations and medical device manufacturers. There were actually multiple meetings. Here I summarize just one that I attended in my role as a professor leading the Archimedes Center for Medical Device Security at the University of Michigan, and in my role as a member of the Computing Research Association's Computing Community Consortium (CCC) Council.

Convened by the President's Office of Science and Technology Policy (OSTP), we sat together in the elegant Diplomatic Room in the Old Executive Office Building. I was invited because of my expertise in medical device security and FDA regulatory affairs dating back to when I briefed the FDA in October 2006 on looming cybersecurity risks and when I worked in hospital IT in the early 1990s. I was probably not invited for my bread making skills.

The room was packed with people from a diverse set of backgrounds: techies, physicians, policy wonks, CISOs, lawyers, and more. I noticed that the group roughly divided into three parts, like Gaul:
  • visitors like myself who responded to questions, 
  • special assistants to the President who asked questions, and 
  • leaders from various parts of the executive branch who listened attentively.
White House Chief Data Scientist DJ Patil chaired the meeting. White House Cybersecurity Czar Michael Daniel asked many questions. There were a large number of federal representatives from 
  • various HHS agencies (FDA, CMS, OCR, ONC) plus the HHS CISO,
  • the U.S. Digital Service, 
  • DOD, 
  • DHS, 
  • FBI, 
  • NIH, 
  • the National Security Council, and 
  • a guy from the Secret Service who offered just his first name.
One notable techie in the room was Mina Hsiang, a fellow engineer from MIT who served in the tech surge team to rescue healthcare.gov.

We talked about the NIST cybersecurity framework, collaboration across agencies and industry, regulatory matters to incentivize better cybersecurity, information sharing so that hospitals and manufacturers need not be in the dark about threats, incident and vulnerability response, leadership, and medical devices in general.

Prof. Kevin Fu and Dr. David Klonoff
Michael Daniel expressed concern that the Internet was becoming a liability, but also that security problems can slow innovation. He pointed out that the median number of days to detect an intrusion has improved to an embarrassing 209 days across all industries. So what happens during those 209 days as the intrusion spreads its tentacles thru a hospital? He also expressed hope that computer scientists can find a way to decouple and better layer security into operating systems (sounds right up the alley for an SOSP paper). Multiple speakers brought up the topic of Medicare/Medicaid reimbursement policies, and how it ought to use the power of the purse to incentivize purchasing of more secure, safe, and effective products. Separately reached for comment, a representative from CMS explained that they do routinely realign their reimbursement policies, especially when FDA uses new guidance (ahem, cue the new FDA pre-market and post-market guidance). A CMS representative explained that it's not uncommon to set policies more strict than FDA requirements by pointing to industry standards (cue AAMI TIR 57 on medical device security).

It's the Simple Stuff, Stupid

I spoke about cybersecurity problems at hospitals and medical device manufacturers, why the problems exist in the first place, and how stakeholders are genuinely working on the problems. The good news is that many (but not all) manufacturers and hospitals genuinely want to find a way to mitigate cybersecurity risks. In contrast to sensationalist media reports, I emphasized that the greatest near-term risks are dirt simple: the delivery of patient care is disrupted when medical devices get compromised by garden variety, decade-old malware by accident. These devices are no longer safe and effective, and often require downtime to clean up the cybermess. My longer manifesto on this subject appears in the National Academy of Engineering Winter 2015 newsletter and as part of a workshop at the Institute of Medicine.

The feds had many questions about NIST guidance documents on cybersecurity, and the invited guests from industry heaped praise on NIST for documents that actually get used in practice. Footnote: NIST is about to celebrate the grand opening of its new National Cybersecurity Center of Excellence (NCCoE). I've been asked to spread the word about their recently posted call on tools to protect the security of medical devices.

One of the more interesting conversations involved culture shock. When I spoke about the security problems that hospitals face and the sometimes adversarial relationship between IT and biomedical groups, the counsels from the American Hospital Association nodded, smiled, and sighed in agreement. They know what I am talking about: the IT security people that lock down computers to the point that clinicians can't get their job done, or the clinician who accidentally infects a cathlab with virus transferred by a USB stick from a Yahoo account on a nursing workstation. Having worked in a community hospital installing computers in patient rooms, back offices such as medical records, and administrative areas such as the CEO's office, I had first hand experience observing effective and ineffective ways of deploying technology in clinical areas. IT security people: thou shalt not interrupt clinical workflow! Period!

For the academics

I'd like to encourage my fellow computer science faculty to get out of their dingy offices and educate leaders in government. Conference and journal publications are not the end point of research, but rather the beginning of impact on society at large. For faculty who might participate in future White House roundtables, here's a bit of advice. Come prepared with a single request, not a long annoying list, of how the government can help help rather than get in the way. My request was simple: use the force. That is, use the convening force of the government to bring stakeholders together. I asked them to convene medical device manufacturer CEOs, Boards of Directors, and hospital executives to ask how they are meaningfully addressing medical device security risks.

Final thoughts

The higher ranking people in federal government are just beginning to wrestle with the problem of medical device security. It's clear that the government isn't going to sit idly as hospitals continue to get infected with cybersecurity problems (three hospitals hit last week [1, 2, 3]) and manufacturers continue to produce difficult to secure devices (remote buffer overflows in drug infusion pumps last week). At the end of the day, hands were shook, business cards were exchanged, speaking invitations were offered, and other passive tense events. 

The government is a meta-organization, and you should not expect them to directly solve your problems. They will not do your homework for you, and they won't debug your software for you. But they will set expectations and desired outcomes, and they will take action against medical device companies that prefer to bury cybersecurity problems. Expect to hear about the outcomes of these types of ongoing meetings at the 4th Annual Archimedes Workshop on Medical Device Security at the University of Michigan. Ok, all for now!

Kevin Fu is Associate Professor of EECS at the University of Michigan and Chief Scientist of Virta Labs, Inc.

Tuesday, January 19, 2016

Postmarket Management of Cybersecurity in Medical Devices: FDA Releases #2 Draft Guidance Document

In the end, poost-market medical device
security is about peeople and respoonsibility. Photo
taken today outside the Washington Convention
Center meeting on automotive cybersecurity.
FDA has unleashed its long-awaited #2 guidance document on cybersecurity: its draft post-market guidance on medical device security. Ok, ok, I conclude my Secure Health IT humor here.

I'd like to commend FDA for releasing this difficult to write document. To the arm chair engineer, one might think this is easy stuff. Wrong. While the already finalized pre-market guidance primarily focuses on basic engineering practices to build security into medical device designs, the post-market guidance is mostly about people and effective communication. Why is writing post-market guidance so difficult? Because it's more about people than technology.

There's a lot that the FDA guidance gets right, and most of my criticism pertains to word choice (and lack of puns) that can be solved by editing. The preamble of the document (that focuses on networked medical devices) does not entirely match the body of the document (that talks about all devices, not just networked). The terms "networked devices” and “connected" are red herrings. A network is not necessary for an cybersecurity exploit; malware gets in just fine by unhygienic USB drives carried by unsuspecting personnel. Social engineers still use telephones to trick personnel into enabling unauthorized remote access. The final post-market guidance will need to more deliberately draw attention to outcomes of compromise and risks of vulnerabilities rather than the constantly evolving modality of delivery of exploits. After all, when we talk about surveilling for the spread of flu, we don't limit discussions to spread by cough versus spread by sneeze. Should the document list networked and connected devices as examples of infection vectors? Yes. Should it mention only networked and connected devices? No. Outcomes, not modalities.

What's my opinion on important post-market activities in general? Stakeholders need to communicate vulnerabilities more effectively, and monitor for shifting threats. Medical device manufacturers should create workflows to receive outside input on potential vulnerabilities.

Security folks who discover potential problems need be aware of timescales for responses to responsible security vulnerability disclosures. As Allan Friedman explains, even if you think you're the most important person on the planet, don't expect a medical device manufacturer to simply drop everything they are doing to fix a security flaw overnight. On the other hand, it boggles the mind why a manufacturer might wait a year to meaningfully respond to a clinically significant vulnerability reported by a security researcher.

I expect to see more FDA actions on the less noble manufacturers who do not catch up with this basic medical device security post-market guidance.

Thursday, December 3, 2015

FDA Hosts Workshop on Medical Device Cybersecurity in 2016


I'm pleased to announce that FDA will be holding its 2nd workshop on Collaborative Approaches to Medical Device Cybersecurity on January 20-21, 2016 at FDA's White Oak headquarters. This public workshop will bring together the stakeholders who have been communicating over the last couple years to find collaborative ways to improve rather than whine about medical device security.

On everyone's minds is the anticipated FDA guidance document on post-market cybersecurity as well as the AAMI guidance document on medical device security that many of us have been toiling over for multiple years to help medical device engineers incorporate cybersecurity best practices into the early requirements engineering, design, and implementation of medical devices.

For others in the cyberphysical systems space, one might come a day early because the National Highway Traffic Safety Agency will be holding a suspiciously similarly sounding Vehicle Cybersecurity Roundtable on January 19, 2016!

All these interesting workshops will be leading up to the 4th Annual Archimedes Workshop on Medical Device Security in May 16-17, 2016 in Ann Arbor, MI.

See you there!